
PHYSICAL REVIEW E AUGUST 1999VOLUME 60, NUMBER 2
Noise-induced phase space transport in two-dimensional Hamiltonian systems

Ilya V. Pogorelov*
Department of Physics, University of Florida, Gainesville, Florida 32611

Henry E. Kandrup†

Department of Astronomy, Department of Physics, and Institute for Fundamental Theory, University of Florida,
Gainesville, Florida 32611

~Received 11 February 1999!

First passage time experiments were used to explore the effects of low amplitude noise as a source of
accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then com-
pared with the effects of periodic driving. The objective was to quantify and understand the manner in which
‘‘sticky’’ chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long
times, can become ‘‘unstuck’’ much more quickly when subjected to even very weak perturbations. For both
noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturba-
tion. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very
similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation
theorem is also largely irrelevant. Allowing for colored noisecan significantly decrease the efficacy of the
perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that
there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly,
periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequen-
cies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic
driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the
fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmi-
cally in the amplitude of the perturbation.@S1063-651X~99!03508-4#

PACS number~s!: 05.45.2a, 05.40.Ca, 05.60.Cd
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I. MOTIVATION

It is well known that a complex phase space contain
large measures of both regular and chaotic orbits is o
partitioned by such partial obstructions as cantori@1# or Ar-
nold webs@2# which, although not serving as absolute bar
ers, can significantly impede the motion of a chaotic or
through a connected phase space region. Indeed, the fact
in two-dimensional Hamiltonian systems, chaotic orbits c
be ‘‘stuck’’ near regular islands for very long times wa
discovered empirically@3# long before the existence of can
tori was proven@4#.

It has also been long known that low amplitude stocha
perturbations can accelerate Hamiltonian phase space t
port by enabling orbits to traverse these partial barriers. T
was, e.g., explored by Lieberman and Lichtenberg@5#, who
investigated how motion described by the simplified Ula
version of the Fermi acceleration map@6# is impacted by
random perturbations, allowing for the modified equatio
@7#
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where the ‘‘noise’’Dc corresponds to a random phase sh
uniformly sampling an interval@2w,1w#.

That stochastic perturbations can have such effects
Hamiltonian systems is important in understanding the lim
tations of simple models of real systems. In the absenc
all ‘‘perturbations’’ and any other irregularities, the chaot
phase space associated with some idealized two- or th
dimensional Hamiltonian system may be partitioned into
gions which are effectively distinct over relatively short tim
scales. However, even very weak perturbations of the id
ized model, so small as to seem irrelevant on dimensio
grounds, can blur these barriers and permit a single orb
move from one region to another on surprisingly short tim
scales.

One practical setting where this may be important is
understanding how, in the context of the core-halo model@8#
of mismatched charged particle beams, the focusing of
accelerator beam can be corrupted by imperfections in
magnetic fields. To the extent that such irregularities can
modeled as noise, there is the concern that noise-indu
diffusion can result in particles in the beam becoming su
ciently defocused as to hit the walls of the container, wh
is a disaster. Work in this area is currently focused on
taining realistic estimates of the noise amplitude and
form of the power spectrum@9#.

Another setting is in galactic astronomy. Recent obser
tions indicating~i! that many/most galaxies are genuine
triaxial, i.e., neither spherical nor axisymmetric, and~ii ! that
they contain a pronounced central mass concentration
gest strongly that the self-consistently determined bulk gra
1567 © 1999 The American Physical Society
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1568 PRE 60ILYA V. POGORELOV AND HENRY E. KANDRUP
tational potential associated with a galaxy contains sign
cant measures of both regular and chaotic orbits@10#. It was
originally expected that, in such complex potentials, regu
orbits would provide the skeleton to support the triax
structure, and that chaotic orbits would serve to fill in t
remaining flesh of the self-consistent equilibrium@11#. How-
ever, it appears that, in many cases, much of the expe
role of regular orbits must be played by ‘‘sticky’’ chaot
orbit segments since, as a result of resonance overlap
measure of regular orbits in certain critical regions is ve
small, albeit nonzero@12#. The obvious question is, can low
amplitude perturbations reflecting internal substructures
gas clouds and individual stars or the effects of an exte
environment destabilize a near-equilibrium on a time sc
short compared with the age of the Universe? Prelimin
work would suggest that they can@13#.

In both these settings, one knows that weak perturbat
will eventually trigger significant changes in energy on so
fiducial relaxation timetR , which implies that they could
have a significant effect. This, however, is not the critic
issue here. Rather, the question is whether low amplit
perturbations can have significant effects already on a t
scale short compared with the time scale on which the va
of the energy, or any other isolating integral, changes sign
cantly.

In understanding the potential effects of such low amp
tude ‘‘noise,’’ there are at least three important questio
which need to be addressed.

~i! How does the effect depend on the amplitude of
noise?Is there a threshold amplitude below which the no
is essentially irrelevant, or do the effects turn on more gra
ally? Does the efficacy of the perturbation scale as a sim
power of the amplitude or does one see something m
subtle?

~ii ! To what extent do the details of the noise matter?For
some problems, such as energy barrier penetration, add
~i.e., state-independent! and multiplicative ~i.e., state-
dependent! noises can yield very different results@14#. How-
ever, the physics here is not the same since one is not de
with a barrier which, in the absence of perturbations, is
solute. Rather, one is dealing with anentropy barrier@15#. It
would seem that the problem of diffusion through cantori
along an Arnold web is more similar to problems involvin
chaotic scattering@16# or escapes of unbound orbits from
complex Hamiltonian system@17# where, in the absence o
perturbations, the requisite escape channels exist and
only a matter of how fast any given orbit can find one.

~iii ! Why does noise lead to accelerated phase sp
transport?Granted that the physics is different from diffu
sion in energy, what is the correct physics? One possibilit
that introducing noise simply fuzzes out the details of
purely Hamiltonian evolution that are ensured by Liouville
theorem, thus enabling orbits to breach gaps which wo
otherwise be impenetrable. However, something very dif
ent might be responsible for what is seen.

This paper aims to address these questions for t
dimensional Hamiltonian systems by performingfirst pas-
sage time experiments.What this entails is identifying cha
otic orbits which, in the absence of any perturbations, rem
‘‘stuck’’ near regular islands for very long times, and dete
mining how the introduction of weak noise reduces the
-
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cape time. The experiments that were performed and in
preted involved both additive and multiplicative noise. Th
also allowed for both white noise, which isd-correlated in
time and has a flat power spectrum, and colored noise, w
has a finite autocorrelation time, so that the power spect
effectively cuts off for large frequencies. Finally, the expe
ments allowed for both external noise, presumed to exis
and of itself, and internal noise, which is accompanied b
friction that is related to the noise by a fluctuation-dissipat
theorem@18#. To gain additional insights, the results of the
noisy experiments were also compared with experiment
which the unperturbed initial conditions were evolved in t
presence of low amplitude periodic driving, so that t
breaching of cantori could be triggered by modulational d
fusion @7#.

Section II describes the experiments that were perform
and the following three sections report the results. Section
summarizes the effects of low amplitude periodic drivin
indicating the relative importance of the amplitude and f
quency of the perturbation. Section IV describes the effe
of different sorts of white noises, and Sec. V generalizes
preceding section to the case of colored noise. Section
concludes by summarizing the evidence that, like perio
driving, noise-induced extrinsic diffusion through cantori is
resonance phenomemon which requires substantial pow
frequencies comparable to the natural frequencies of the
perturbed orbit, and which has an efficacy that scales loga
mically in the amplitude of the perturbation.

II. A DESCRIPTION OF THE COMPUTATIONS

The experiments described here were performed for or
evolved in two representative two-dimensional potentia
namely the so-called dihedral potential@19# for one particu-
lar set of parameter values, for which the Hamiltonian tak
the form

H5
1

2
~px

21py
2!2~x21y2!1

1

4
~x21y2!22

1

4
x2y2,

~2.1!

and the sixth-order truncation of the Toda lattice poten
@20#, for which

H5
1

2
~px

21py
2!1

1

2
~x21y2!1x2y2

1

3
y31

1

2
x41x2y2

1
1

2
y41x4y1

2

3
x2y32

1

3
y51

1

5
x61x4y21

1

3
x2y4

1
11

45
y6. ~2.2!

Extensive explorations of orbits in these Hamiltonians wo
suggest that, in many respects, these potentials are gene
the set of nonintegrable potentials admitting global stoch
ticity. This is consistent with the fact that the experimen
performed for this paper yielded similar results for both p
tentials. However, these potentialsare special in the sense
that they admit discrete symmetries: the dihedral potentia
invariant under a rotation byp/4; the truncated Toda poten
tial is invariant under a rotation by 2p/3. It should be noted
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for future reference that, for relatively low energies,E,40
or so, a characteristic orbital time scale in each poten
corresponds to a timet;1 – 3, so that most of the power i
typical orbits is in frequenciesv;1 – 5.

In both potentials it is easy to find ‘‘sticky’’@3# chaotic
orbits which, visually, are very nearly indistinguishable fro
regular orbits for comparatively long times~although they
have short time Lyapunov exponents sufficiently large t
they must be chaotic!. Three examples are exhibited in th
left hand panels of Fig. 1, namely two orbits in the dihed
potential, with energiesE510 andE520, and an orbit in
the truncated Toda potential withE520. The orbit in Fig.
1~a! resembles closely what a galactic astronomer wo
term a regular loop orbit; the orbit in Fig. 1~d! resembles a
regular fish. The orbit in Fig. 1~g! is less familiar, but would
again seem nearly regular. The important point, then, is
if the orbit is integrated for a somewhat longer interval,
behavior exhibits an abrupt qualitative change. This is ill
trated in the center panels of Fig. 1, which exhibit the sa
initial conditions, each integrated for an interval twice
long. The first two orbits are no longer centrophobic, and
third has so changed as to manifest explicitly the discr
2p/3 rotation symmetry of the truncated Toda potential.
each case, the orbit is far more chaotic, as is readily c
firmed by the computation of a Lyapunov exponent.

The transition from nearly regular, ‘‘sticky’’ behavior t
something more manifestly chaotic occurs once the orbit
diffused through one or more cantori that surround a reg
phase space island@1,4#. The orbit starts out chaotic an
remains chaotic throughout, but its basic properties exh
significant qualitative changes after the orbit has esca

FIG. 1. ~a! A chaotic initial condition withE510 evolved in the
dihedral potential for a timet5512. ~b! The same orbit integrated
for t51024. ~c! The power spectraux(v)u and uy(v)u for the orbit
in ~a!. ~d! A chaotic initial condition withE520 evolved in the
dihedral potential for a timet5512. ~e! The same orbit integrated
for t51024.~f! ux(v)u anduy(v)u for the orbit in~d!. ~g! A chaotic
initial condition withE520 evolved in the truncated Toda potenti
for a time t5300. ~h! The same orbit integrated fort5600. ~i!
ux(v)u and uy(v)u for the orbit in ~g!.
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through the cantori to become ‘‘unconfined.’’ The preci
objective of the work described here is to determine how
time required for chaotic orbits to change from sticky
unconfined is altered when the orbit is perturbed by l
amplitude perturbations.

Determining the precise location of the outermost ca
torus is possible, albeit exceedingly tedious@21#. Fortu-
nately, however, this is not essential in order to estimate w
reasonable accuracy when a ‘‘sticky’’ orbit has become ‘‘u
stuck.’’ Once the orbit has breached the outermost confin
cantorus, it will typically move quickly to probe large po
tions of the accessible configuration space regions, wh
were inaccessible before this escape. Moreover, escap
accompanied by an abrupt increase in the value of the lar
short time Lyapunov exponent@22#, which reflects the fact
that ‘‘sticky’’ chaotic orbit segments confined near regu
islands tend to be less unstable than unconfined chaotic
ments far from any regular island@23#.

As a practical matter, thefirst escape timefor a sticky
chaotic orbit was identified by~i! using simple polynomial
formulas to delineate approximately the configuration sp
region to which the orbit is originally confined, and then~ii !
determining the first time that, with or without perturbation
the orbit leaves this special region. To check that the esc
criterion was reasonable, two tests were performed: It w
verified that, with or without perturbations, small changes
the precise definition have only minimal effects on the co
puted first escape time, and that, for the case of unpertu
orbits, the time of escape corresponds to a time when
largest short time Lyapunov exponent exhibits an abrupt
crease.

This prescription allowed one to identify with reasonab
accuracy transitions from sticky chaotic to unconfined c
otic behavior, butnot from chaotic to regular. The constan
energy surface contains KAM tori, which serve as absol
boundaries between regular and chaotic behavior, so tha
unperturbed orbit that starts as chaotic can never bec
regular. If, however, the orbit is perturbed, the energy is
longer conserved, and it becomes possible in some case
an orbit which began as chaotic to evolve to a state in wh
if the noise were terminated, would be regular.

The experiments described in this paper involved gen
ating ensembles of perturbed orbits and then extracting
tistical properties from these ensembles. In this setting,
different diagnostics proved especially useful.

~i! The time T~0.01! required for 1% of the orbits in the
ensemble to escape.As described in the following sections
escapes do not begin immediately. Rather, there is typica
relatively extended initial period, the duration of which d
pends on the form of the perturbation, during which no
capes are observed. Perhaps the most obvious numb
record would be the time when the first orbit in the ensem
escapes. However, it was found that, in a non-negligible fr
tion of the experiments that were performed — perha
5–10 % — one orbit often escapes long before any of
others. For this reason, it seemed more reasonable to tra
diagnostic that is less sensitive to comparatively rare exc
tions.

~ii ! The initial escape rateL. In many, albeit not all,
cases it was found that, once the escape process ‘‘turns
at ~say! time t0 , orbits escape in a fashion which, at lea
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1570 PRE 60ILYA V. POGORELOV AND HENRY E. KANDRUP
initially, is consistent with a Poisson process, withN(t), the
fraction of the orbits which have not escaped, decreas
exponentially:

N~ t !5N0 exp@2L~ t2t0!#. ~2.3!

The experiments with periodic driving involved solvin
an evolution equation of the form

d2r

dt2
52“V~r !1A sin~vt1w! r̂ . ~2.4!

The driving was thus characterized by three paramet
namely the frequencyv, the amplitudeA, and the phasew.
Usually, but not always, the phasew was set equal to zero
Ensembles of periodically driven orbits were generated by~i!
specifying a frequency interval@v,v1D#, ~ii ! sampling this
interval uniformly to select a collection of~usually! 1000
driving frequencies, and then~iii ! integrating the same initia
condition with the same amplitudeA for each of these fre-
quencies. When looking at relatively low frequencies,
,v,100, the frequency range was taken to beD51.0. For
higher frequencies, 100,v,1000, the rangeD510.0.

The experiments involving intrinsic noise entailed solvi
Langevin equations of the form

d2r

dt2
52“V~r !2hv1F, ~2.5!

with h5h(v) and F homogeneous Gaussian noise char
terized by its first two moments:

^Fa~ t !&50

and

^Fa~ t1!Fb~ t2!&5dabK~v,t12t2! ~a,b5x,y!. ~2.6!

K(v,t) is the autocorrelation function. For the case
d-correlated white noise,

K~v,t!52Qh~v!dD~t!, ~2.7!

where Q denotes a characteristic temperature, the frict
and noise being related by a fluctuation-dissipation theor
Experiments involving extrinsic noise proceeded identica
except that the friction was turned off, so that

d2r

dt2
52¹V~r !1F. ~2.8!

White noise simulations were performed using an al
rithm developed by Grineret al. @24# ~see also@25#!. Colored
noise simulations were performed using a more complex
gorithm described in Sec. V. The experiments w
d-correlated white noise allowed both for additive nois
whereh is a constant, and multiplicative noise, whereh is a
nontrivial function ofv. The experiments with colored nois
involved two different choices for the form ofK(t), in each
case allowing for a parametera which characterized the tem
poral width of the autocorrelation function. In every cas
ensembles of orbits with the same initial conditions we
g
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n
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,
e

generated by freezing the form and amplitude of the no
and performing multiple realizations of the same rand
process using different pseudorandom seeds.

III. PERIODIC DRIVING AND MODULATIONAL
DIFFUSION

Experiments involving multiple integrations of the sam
initial condition reveal that escape is~at least! a two-stage
process: In general, there is an initial interval, often qu
extended, during which no escapes occur. Only after
interval is there an abrupt onset of escapes which, at leas
relatively early times, can be well modeled as a Poisson p
cess, whereN(t), the fraction of the orbits that have not ye
escaped, decreases exponentially. An example of this be
ior is illustrated in Fig. 2, which was generated for the init
condition exhibited in Fig. 1~a!, allowing for a frequency
interval 2.0<v<3.0 and an amplitudeA51022.5. The
straight line exhibits a linear fit to the intervalT(0.01)<t
<300.

As asserted already, at a time only somewhat larger t
T(0.01), N(t) appears to decrease exponentially. Howev
for t.400 or so it is clear from Fig. 2 thatN(t) decreases
more slowly. One plausible interpretation of this later sube
ponential decay is that some of the initially sticky chao
orbits have become trapped even closer to the regular isl
so that escape becomes much more difficult if not imp
sible. This interpretation was tested by turning off the pe
odic driving at a late timet51024 and computing both th
orbit and an approximation to the largest short tim
Lyapunov exponent for the interval 1024,t,3072. The re-
sulting output indicated that, in the absence of any drivi
many of these orbits were now regular.

For fixed frequency interval and phase, bothT(0.01), a
measure of the time before escapes begin, andL, the initial
escape rate once escapes have begun, typically scale
rithmically in A, the amplitude of the driving. Six example
of this behavior are provided in Fig. 3, these correspond
to the three initial conditions exhibited in Fig. 1 for tw
different frequency intervals, namely 0.0<v<1.0 and 2.0
<v<3.0. In each case, the size of the error bar has been
equal to the difference betweenT(0.01) and the time at
which the first orbit escapes. In most cases, this differenc
small, but in some cases it becomes appreciable. The
that the curve is not exactly linear, and that it levels out
certain ranges of amplitude, is not an obvious finite num
effect. Doubling the number of frequencies that we

FIG. 2. N(t), the fraction of the orbits from a 4001 orbit en
semble not yet having escaped at timet, computed for the initial
condition exhibited in Fig. 1~a!, allowing for a perturbation of am-
plitude A51022.5 with variable frequencies 2.0<v<3.0.
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sampled, and hence the number of orbits, does not sig
cantly impact the overall smoothness of the curve.

Before the onset of escapes, the rms deviationdr rms be-
tween perturbed and unperturbed orbits typically grows a

dr rms}A exp~xt !, ~3.1!

whereA is the driving amplitude andx is comparable to the
positive short time Lyapunov exponent for the unperturb
orbit. The rms deviationdErms also varies linearly withA,
but exhibits a much weaker time dependence. That b
these quantities scale linearly inA is hardly surprising, since
periodic driving is a coherent process. The different tim
dependences reflect the fact that, although nearby cha
orbits tend to diverge exponentially in configuration spa
with or without small perturbations, energy is conserved
solutely in the absence of perturbations. ThatT(0.01) scales
as log10A means that escapes begin whendr rms, rather than
dErms, assumes a roughly constant value, independent o
amplitudeA. The characteristic value when escapes begi
typically dr rms;1 – 2, which implies that the perturbed orbi
have dispersed to probe most of the region inside the con
ing cantori.

FIG. 3. ~a! T(0.01), the first escape time for 1% of an ensem
of 1000 integrations of the initial condition of Fig. 1~a!, driven with
frequencies 0<v<1, plotted as a function of the logarithm of th
amplitudeA of the perturbation.~b! The same for an ensemble wit
3<v<4. ~c! T(0.01), the first escape time for 1% of an ensem
of 1000 integrations of the initial condition of Fig. 1~d!, driven with
frequencies 0<v<1, plotted as a function of the logarithm of th
amplitudeA of the perturbation.~d! The same for an ensemble wit
3<v<4. ~e! T(0.01), the first escape time for 1% of an ensem
of 1000 integrations of the initial condition of Fig. 1~g!, driven with
frequencies 0<v<1, plotted as a function of the logarithm of th
amplitudeA of the perturbation.~f! The same for an ensemble wit
3<v<4.
fi-

d

th

e
tic
,
-

he
is

n-

This leads to a natural interpretation of the escape p
cess: Early on, the perturbed orbits remain relatively close
the unperturbed orbit, so that it is unlikely that they will b
able to escape.~The initial conditions were so chosen that,
the absence of perturbations, escape only occurs at a c
paratively late time.! Eventually, however, the perturbed o
bits will have spread out to sample more or less uniform
some region inside the bounding cantori. Once this has h
pened, orbits will begin to escape ‘‘at random’’ in a fashio
that samples a Poisson process. If the holes were very la
one might expect that the escape rate at this stage woul
nearly independent of amplitude. Given, however, that orb
still have to ‘‘hunt’’ for tiny escape channels, one mig
expect thatL also depends logarithmically on the amplitud
of the perturbation.

This interpretation is consistent with the expectation t
an initially localized ensemble of chaotic orbits will exhib
an exponential in time approach towards a near-invariant
tribution that corresponds to a near-uniform population
those accessible phase space regions not obstructed by
tori @26#. It is also qualitatively similar to what appears
happen when considering the escape of energetically
bound orbits from a complicated two-dimensional poten
@27#.

Periodic driving tends to yield the smallestT(0.01) and
largestL for driving frequenciesv comparable to the natura
frequencies of the unperturbed orbits. For example, a plo
T(0.01) as a function ofv for fixed amplitudeA and phasew
typically exhibits the smallest values ofT(0.01) for v
;1 – 3 and an abrupt increase for somewhat larger frequ
cies. However, low amplitude driving can still have an a
preciable effect on the time of escape even when the driv
frequency is much larger than the natural frequencies of
unperturbed orbit. For example,T(0.01) can be significantly
shorter than the escape time for an unperturbed orbit even
driving frequencies as large asv;1000.

Three examples of howT(0.01) varies withv for fixed A
and f are exhibited in Fig. 4. The three left panels pl
T(0.01) as a function ofv for 0<v<40. The three right
panels plot T(0.01) as a function of log10v for 1<v
<1000. In some casesT(0.01) varies smoothly as a functio
of v for v@10; in other cases, considerably more irregul
ity is evident. In either case, however, it is apparent th
overall, the efficacy of the driving is set by the logarithm
the driving frequency.T(0.01) tends to increase linearly i
log10v. Given the plausible hypothesis that this accelera
escape is a resonance phenomenon involving a coupling
tween the driving frequency and the natural frequencies
the unperturbed orbits, the fact that high frequencies s
have an appreciable effect can be interpreted as imply
that, even though the unperturbed orbit has little power
high frequencies, periodic driving can couple via higher
der harmonics.

When, for fixedA and w, T(0.01) andL are compara-
tively smooth functions of driving frequency,T(0.01) tends
to exhibit only a relatively weak dependence on the pha
Different values ofw tend to yield comparable escape time
If, alternatively,T(0.01) depends sensitively onv, it is more
likely that the escape time also depends sensitively onw.
However, this trend is not uniform. In some cases, varyingw
continuously from 0 to 2p changesT(0.01) by no more than
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1572 PRE 60ILYA V. POGORELOV AND HENRY E. KANDRUP
10%. In other cases,T(0.01) can vary by a factor of 4, o
more. Finally, it should be noted that the importance of no
in accelerating diffusion through cantori can depend se
tively on the details of the orbit. Consider, e.g., two initi
conditions in the same potential with the same energy wh
probe nearby phase space regions and which, in the abs
of perturbations, lead to orbits that escape at compar
times. There is no guarantee that ensembles of periodic
driven orbits generated from these different initial conditio
and evolved with the same amplitudes, phases, and dri
frequencies will exhibit similar values ofT(0.01) andL,
even if the unperturbed orbits have power spectra that
almost identical.

IV. WHITE NOISE

For stationary Gaussian white noise with zero mean,
erything is characterized by the autocorrelation funct
K(t12t2)5Qh(r ,v)dD(t12t2), the form of which is deter-
mined in turn byh. Choosingh to be constant yields addi

FIG. 4. ~a! T(0.01), the first escape time for 1% of an ensem
of 1000 integrations of the initial condition of Fig. 1~a!, driven with
amplitudeA51022.5, plotted as a function of frequency rangev
<V,v11 for 0,v,40. ~b! The same information for 1,v
,1000, now plotted as a function of log10 v. The dashed line
represents the escape time for the unperturbed orbit.~c! T(0.01),
the first escape time for 1% of an ensemble of 1000 integration
the initial condition of Fig. 1~c!, driven with amplitude A
51022.5, plotted as a function of frequency rangev<V,v11 for
0,v,40. ~d! The same information for 1,v,1000, now plotted
as a function of log10 v. The dashed line represents the escape t
for the unperturbed orbit.~e! T(0.01), the first escape time for 1%
of an ensemble of 1000 integrations of the initial condition of F
1~e!, driven with amplitudeA51022.5, plotted as a function of
frequency rangev<V,v11 for 0,v,40. ~f! The same infor-
mation for 1,v,1000, now plotted as a function of log10 v. The
dashed line represents the escape time for the unperturbed or
e
i-

h
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lly
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tive noise. Allowing for a nontrivial dependence onr or v
yields multiplicative noise. One aim of the work describ
here was to determine the extent to which the detailed fo
of the noise matters. This was done by first performing
periments involving additive noise, and then comparing
results with experiments that involved multiplicative noise
two forms, namely,h}v2 andh}v22, wherev denotes the
orbital speed. The importance of friction was tested by co
paring experiments that included a friction related to t
noise by a fluctuation-dissipation theorem@18# with experi-
ments with no friction at all.

If the friction and noise are to mimic internal degrees
freedom that are ignored in a mean field description, o
anticipates on dimensional grounds that the temperaturQ
will be comparable to a typical orbital energy. For this re
son, most of the experiments that were performed, includ
those described here, involved freezing the temperature
valueQ;E and exploring the effects of varying the amp
tude ofh. The relative normalizations of the multiplicativ
and additive noises were fixed by setting

h~v!5h0~v/^v&!62, ~4.1!

where h0 denotes the constanth appropriate for additive
noise and̂ v& denotes the average speed of the unpertur
orbit. Comparing additive and multiplicative noise entail
comparing experiments with the sameh0 .

Considering only two forms of multiplicative noise in
volves probing the tip of an iceberg: other multiplicativ
noises could in principle have very different effects. Ho
ever, the two cases examined here do allow one to
whether the overall effect of the friction and noise c
change significantly if one allows the statistics of the noise
vary along an orbit. The particular forms chosen here w
motivated by two considerations.~i! If the noise is intended
to mimic discreteness effects in a plasma or a galaxy~i.e.,
electrostatic or gravitational Rutherford scattering!, the fric-
tion should depend on velocity@28#. ~ii ! Allowing for a rela-
tively strong dependence on speed,h}v62, should make
even relatively small differences comparatively easy to s

Overall, the effects of white noise are very similar to t
effects of periodic driving. In particular, escape was ag
observed to be a two-stage process, involving an initial
terval during which different realizations of the same init
condition diverge inside the confining cantori, followed b
an abrupt onset of escapes which, at least initially, is w
approximated as a Poisson process. Moreover, as for the
of periodic driving,N(t) decreases subexponentially at la
times, possibly because some of the noisy orbits have
come more closely trapped near a regular island.

Figure 5 exhibits plots of lnN(t) generated for one repre
sentative initial condition, corresponding to the orbit in F
1~a!. Here the experiments involved additive noise and fr
tion related by a fluctuation-dissipation theorem, with a fix
Q510 and 1029<h0<1024. It is evident that, ash0 de-
creases and the friction and noise become weaker, the es
time T(0.01) increases and the escape rateL decreases.

More careful examination reveals further that, for fixe
Q, bothT(0.01) andL scale logarithmically inh0 . This is
illustrated in Fig. 6, which exhibitsT(0.01) and a best-fit
value ofL for the ensembles used to construct Fig. 5~along

of

e

.

.



wi
in

rb

ch
pa
d

ze
n
e

sa
on

e
l

is
ta

-
nd

f
g-
u
a

In
he
hibit
with
.
,
of
,

o-
ith

tive
for
le.
sis
nce
the
to

er,
to

tural
ise

to
re-
as

t the
for
e.

he

c-

y a

-

ble

-

PRE 60 1573NOISE-INDUCED PHASE SPACE TRANSPORT IN TWO- . . .
with some ensembles with intermediate values ofh). This
logarithmic dependence can be understood by analogy
what was observed for periodic driving if one notes that,
the presence of noise, the rms deviation between pertu
and unperturbed orbits typically scales as

dr rms}~hQ!1/2exp~xt !, ~4.2!

a conclusion that can be motivated theoretically@29# and has
been confirmed computationally@13#.

It is interesting that this two-stage evolution — an epo
without escapes followed by an epoch with escapes ap
ently sampling a Poisson process — can also be observe
the absence of noise if one considers a strongly locali
ensemble of initial conditions trapped near a regular isla
and ascertains the time at which each member of the
semble escapes. For example, an ensemble of orbits
pling a cell of size 0.002 centered about the initial conditi
used to generate Fig. 6 yieldedT(0.01)5310 and L
50.000 587, which should be compared with the valu
T(0.01)5131 andL50.001 53 resulting for a single initia
condition evolved withh51029.

Perhaps the most significant conclusion about white no
is that, at least for the examples considered here, the de
are largely irrelevant. For fixedQ andh0 , the values of the
escape timeT(0.01) and the decay rateL are both essen
tially the same for the simulations with additive noise a
those with multiplicative noise withh}v62. The computed
values of T(0.01) andL are also nearly independent o
whether or not one allows for a friction term. The only si
nificant differences between simulations with and witho
friction arise at late times when the energies of individu

FIG. 5. N(t), the fraction of the orbits from a 2000 orbit en
semble not yet having escaped at timet, computed for the initial
condition exhibited in Fig. 1~a!, allowing for additive white noise
with Q510 and variableh51024 ~broad dashes!, h51025 ~triple-
dot-dashed!, h51026 ~dot-dashed!, h51027 ~narrow dashes!, h
51028 ~solid!, andh51029 ~dots!.

FIG. 6. ~a! T(0.01), the first escape time for 1% of an ensem
of 2000 white noise integrations of the initial condition of Fig. 1~a!,
with Q510 and variableh. ~b! L, the rate at which orbits in this
ensemble escape, fitted to the intervalT(0.01),t,256.
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orbits have changed appreciably from their initial values.
this case, allowing for a friction term to counterbalance t
noise assures that, overall, the energies of the orbits ex
smaller changes, so that the ensembles that evolved
noise tend to have somewhat smaller changes in energy

An example of this insensitivity is provided in Fig. 7
which was generated from orbits with the initial condition
Fig. 1~a!, with Q510 andh051025. The solid, dot-dashed
and triple-dot-dashed curves exhibit lnN(t) for ensembles
evolved in the presence of both friction and noise, incorp
rating, respectively, additive noise, multiplicative noise w
h0}v2, and multiplicative noise withh0}v22. The dashed
curve corresponds to an ensemble evolved with addi
noise in the absence of friction. The obvious point is that,
a very long time, these curves are nearly indistinguishab

This insensitivity is again consistent with the hypothe
that noise-induced diffusion through cantori is a resona
phenomenon, and that the only thing that matters is that
noise have significant power at frequencies comparable
the natural frequencies of the unperturbed orbit. If, howev
one alters the form of the autocorrelation function so as
suppress power at frequencies comparable to these na
frequencies, one would expect that the effects of the no
should decrease, so thatT(0.01) increases andL decreases.
The extent to which this is true is discussed in Sec. V.

V. COLORED NOISE

The objective of the experiments described here was
explore the effects of random perturbations with autocor
lation times sufficiently long that they cannot be modeled
d-correlated white noise. Once again it was assumed tha
noise is stationary and Gaussian with zero mean and,
simplicity, attention was restricted to noise that is additiv
However, it was no longer assumed thatK(t) is d-correlated
in time.

Attention was focused on two types of colored noise. T
first is generated by the Ornstein-Uhlenbeck process~see,
e.g., @18#!, and is characterized by an autocorrelation fun
tion K(t) that decays exponentially, i.e.,

K~t!5scol
2 exp~2autu!. ~5.1!

The second involves an exponential decay modulated b
power law:

FIG. 7. N(t), the fraction of the orbits from a 2000 orbit en
semble not yet having escaped at timet, computed for the initial
condition exhibited in Fig. 1~a! with Q510 andh051025. The
four curves represent additive white noise and constanth ~solid!,
additive white noise with no friction~dashed!, multiplicative noise
with h}v2 ~dot-dashed!, and multiplicative noise withh}v22

~triple-dot-dashed!.
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K~t!5scol
2 exp~2autu!S 11autu1

a2

3
t2D . ~5.2!

The corresponding spectral densities are, respectively,

S~v!5
scol

2

p

a

v21a2
~5.3!

and

S~v!5
8scol

2

3p

a5

~v21a2!3
. ~5.4!

The autocorrelation times aretc51/a and tc52/a. In both
cases, white noise corresponds to a singular limit witha
˜` and scol

2
˜`, but scol

2 /a˜ const. As for the case o
multiplicative noise, these two examples only probe the
of an iceberg. However, an analysis of their effectsdoes
provide insight into the question of how a finite autocorre
tion time can impact phase space transport in a comp
phase space.

Generating white noise numerically is comparative
straightforward, requiring little more than producing a s
quence of pseudorandom impulses. Generating colored n
takes more thought. The algorithm exploited here was m
vated by the recognition that, in the context of a stocha
differential equation, a white noise random processX(t) can
serve as a source to define a colored noise processY(t). As
a concrete example, consider how Gaussian white noise
be used to implement a random process with an autocor
tion function given by Eq.~5.2!.

Given one stochastic process,X(t), one can define a sec
ond stochastic process,Y(t), implicitly as a solution to the
stochastic differential equation

d3Y~ t !

dt3
13a

d2Y~ t !

dt2
13a2

dY~ t !

dt
1a3Y~ t !5X~ t !.

~5.5!

Since the coefficients in Eq.~5.5! are time-independent con
stants andX(t) is stationary, it is clear that, if this equatio
be solved as an initial value problem, at sufficiently la
timesY(t) can also be considered stationary provided on
as is true, that the dynamical system~5.5! is stable.

By expressingX(t) and Y(t) in terms of their Fourier
transforms, it is easy to see that, neglecting the effects
nontrivial boundary conditions~e.g., choosing boundary con
ditions att0˜2`), the spectral densitiesSX(v) andSY(v)
for the two processes satisfy

SY~v!5
SX~v!

~v21a2!3
. ~5.6!

Assuming, however, thatX(t) corresponds to white noise
SX(v)[sX

2 is a constant, so that the stochastic process w
spectral densitySY necessarily corresponds to colored noi
Indeed, by performing an inverse Fourier transform, it b
comes evident thatSY(v) corresponds to the stochastic pr
cess~5.2! with
p
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,
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.
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scol
2 53psX

2/~8a5!. ~5.7!

A colored random process defined by the Langevin equa
~2.5! or Eq. ~2.8!, with an autocorrelation function of the
form ~5.2!, is equivalent mathematically to a collection o
white noise processes. Solving Eq.~5.5! for Y(t) yields the
colored input required to solve Eq.~2.5! or Eq. ~2.8!.

The one remaining question involves normalizations.
compare different colored noises with each other or with
appropriately defined white noise limit, one must deci
what should be meant by noise with variable autocorrelat
time but fixed amplitude. This was done here by consider
sequences of random processes with different values oa
and, for eacha, selectingscol

2 such that

E
2`

`

Ka~t!dt5E
2`

`

Kwhite~t!dt. ~5.8!

In other words, fixed amplitude but variable autocorrelati
time was assumed to correspond to different colored no
for which the time integral of the autocorrelation functio
assumes the same value. Noting that

E
2`

`

Kwhite~t!dt52Qh, ~5.9!

it follows that, for the stochastic process~5.2!,

K~t!5
3ahQ

8
exp~2autu! S 11autu1

a2

3
t2D .

~5.10!

The Ornstein-Uhlenbeck process requires a normalizatio

K~t!5ahQ exp~2autu!. ~5.11!

In the experiments modeling intrinsic noise, the color
noise was augmented by a frictionh, and the friction and
noise were related by a linear fluctuation-dissipation theor
in terms of a temperatureQ. In the experiments modeling
extrinsic noise, the friction vanished andQ had no indepen-
dent meaning as a temperature. Aside froma, which fixes
the autocorrelation time, all that matters is the quantityhQ,
which sets the amplitude of the noise.

FIG. 8. N(t), the fraction of the orbits from a 4800 orbit en
semble not yet having escaped at timet, computed for the initial
condition exhibited in Fig. 1~a!, allowing for friction and additive
Ornstein-Uhlenbeck noise witha50.2, Q510, and variableh
51024 ~dashed!, h51025 ~dot-dashed!, h51026 ~double-dot-
dashed!, h51027 ~broad-dashed!, andh51028 ~solid!.
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As for white noise, the evolution of an ensemble of no
colored orbits is a two-stage process. After an initial epo
without escapes, during which different members of the
semble diverge exponentially, escapes turn on abruptly, w
the first percent of the orbits escaping within an inter
T(0.01) much shorter than the time before the first esca
Interestingly, though, the second phase is often more c
plex than what is observed for white noise. Instead of evo
ing in a fashion that is well fit pointwise by an exponent
decrease, the number remaining,N(t), often exhibits ‘‘pla-
teaus’’ and ‘‘jumps’’ with ~almost! no, and especially large
decreases.~A detailed examination of the data reveals th
such irregularities can also arise for white noise and perio
driving, but are usually much less conspicuous in that ca!

Figures 8–11 exhibit lnN(t) generated for an initial con
dition where such irregularities are comparatively small. F
ures 8 and 9 exhibit data generated for different 4800 o
ensembles generated, respectively, for the stochastic
cesses~5.1! and~5.2!, for the same initial condition as Fig. 5
evolved withQ510.0, a50.2, and variableh. Figures 10
and 11 exhibit analogous plots for the same initial condit
with h51025 and variablea. Figure 12 exhibits data for a
second initial condition in the same potential with the sa
energy for which the early-time irregularities are especia
conspicuous.

These irregularities imply that a pure exponential fit
often not justified. Moreover, even when such a fitis justi-
fied, one finds that, for fixeda, significantly different values

FIG. 9. N(t), the fraction of the orbits from a 4800 orbit en
semble not yet having escaped at timet, computed for the initial
condition exhibited in Fig. 1~a!, allowing for friction and colored
noise given by Eq.~5.2! with a50.2, Q510, and variableh
51024 ~dashed!, h51025 ~dot-dashed!, h51026 ~double-dot-
dashed!, h51027 ~broad-dashed!, andh51028 ~solid!.

FIG. 10. N(t), the fraction of the orbits from a 4800 orbit en
semble not yet having escaped at timet, computed for the initial
condition exhibited in Fig. 1~a!, allowing for friction and Ornstein-
Uhlenbeck noise, withQ510, h51025, and either white noise
~dot-dashed! or variable a520 ~dashed!, a52.0 ~triple-dot-
dashed!, a50.2 ~broad dashes!, anda50.02 ~solid!.
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of h can yield very similar slopes@30#. In this sense, it is not
accurate to state unambiguously that the escape rate s
logarithmically with amplitude. However, what does rema
true is that, overall, escapes tend to happen more slowl
the presence of lower amplitude perturbations, and that
systematic amplitude dependence is very weak, certa
much weaker than a simple power law}h2p with p of order
unity. Moreover, even though the observed escape rates
hibit considerable irregularities, the 1% escape timeT(0.01)
does not. As for the case of white noise and periodic drivi
T(0.01) scales logarithmically in amplitude. Several e
amples are exhibited in Figs. 13~a! and 13~c!, which plot
T(0.01) as a function of log10h for two different initial con-
ditions. In each case, the diamonds represent an Orns
Uhlenbeck process and the triangles the stochastic pro
~5.2!. In panel~a! a52.0; in panel~c! a50.2.

As for white noise, one also finds that, seemingly ind
pendent ofa, the presence or absence of friction is large
irrelevant. This is, e.g., evident from Table I, which, for tw
values ofa, namelya5` ~white noise! anda50.02 ~auto-
correlation timet550), exhibitsT(0.01) as a function of
log10h both in the presence and the absence of friction.

Another obvious conclusion is that the efficacy of color
noise is a decreasing function ofa, the quantity that sets the
autocorrelation timetc . Whena is very large, so thattc is
extremely short, color has virtually no effect. However, asa
decreases andtc increases,T(0.01) increases. In particular
for a!1, which corresponds to an autocorrelation time th
is long compared to a characteristic orbital time sca
T(0.01) is typically much longer than what is found in th
white noise limit. This behavior is evident from Figs. 13~b!
and 13~d!, which exhibitT(0.01) as a function of log10a for
fixed h51025. As for Figs. 13~a! and 13~c!, the diamonds

FIG. 11. N(t), the fraction of the orbits from a 4800 orbit en
semble not yet having escaped at timet, computed for the initial
condition exhibited in Fig. 1~a!, allowing for friction and colored
noise given by Eq.~5.2! with Q510, h51025, and either white
noise ~dashes! or variablea520 ~dot-dashed!, a52.0 ~triple-dot-
dashed!, a50.2 ~broad dashes!, anda50.02 ~solid!.

FIG. 12. The same as Fig. 8 for a different initial condition.
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and triangles represent, respectively, the stochastic proce
~5.1! and ~5.2!. The horizontal dashed line represents t
white noise value towards which the data converge fora
˜`. The obvious inference from this, and other, plots is t
the dependence ofT(0.01) ona or tc is again roughly loga-
rithmic. This is reminiscent of the fact that, as discussed
Sec. III, the efficacy of periodic driving tends to scale log
rithmically in the driving frequency.

Determining the overall efficacy of colored noise as
source of accelerated phase space transport thus involve
interplay between amplitude and autocorrelation time, e
of which, in the ‘‘interesting’’ regions of parameter spac
contributes logarithmically toT(0.01) and ~modulo the
aforementioned caveats! L.

VI. DISCUSSION

Just as for diffusion triggered by low amplitude period
driving, the overall efficacy of noise-induced diffusion

FIG. 13. ~a! T(0.01), the first escape time for 1% of an e
semble of 4800 integrations, computed for the initial condition u
to generate Fig. 1~a!, plotted as a function of log10 h for fixed a
52.0 for the stochastic processes defined by Eq.~5.1! ~diamonds!
and Eq.~5.2! ~triangles!, allowing for both friction and noise.~b!
T(0.01) for the same initial condition, plotted as a function
log10 a for fixed h51025, for the stochastic processes~5.1! ~dia-
monds! and ~5.2! ~triangles!, again allowing for both friction and
noise. The dashed line represents the asymptotic value for w
noise (a˜`). ~c! The same as~a!, albeit for a different initial
condition and witha50.2. ~d! The same as~b!, albeit for the initial
condition in~c! and withh51027 as~a! and~b! for another initial
condition.

TABLE I. The 1% escape timeT(0.01) for orbits in an en-
semble evolved in the dihedral potential~2.1! with the initial con-
dition used to generate Fig. 1~a!, settingQ510.0 and allowing for
variableh. The colored noise was generated by the stochastic
cess~5.2!.

log10 h a5` a5` a50.02 a50.02
with friction no friction with friction no friction

24 21.621 21.672 71.930 71.811
25 41.740 41.660 113.024 112.980
26 71.863 71.816 172.396 172.393
27 82.744 82.724 277.684 277.682
28 131.368 131.616 277.704 277.709
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‘‘sticky’’ chaotic orbits scales logarithmically in the ampli
tude of the perturbation. For both white and colored noi
the 1% escape timeT(0.01) scales logarithmically in the
amplitude of the perturbation and, at least for white noise
does the initial escape rate. The details of the perturba
seem largely unimportant: The presence or absence of a
tion term appears immaterial, and allowing for~at least some
forms of! multiplicative noise also has comparatively min
mal effects. For the case of white noise, the only thing t
seems to matter is the amplitude.

This logarithmic dependence on amplitude implies th
what regulates the overall efficacy of the noise in induc
phase space transport is how fast perturbed noisy orbits
verge from the original unperturbed orbit. Escapes enta
two-stage process, namely~i! an early interval during which
noisy orbits diverge from the unperturbed orbit witho
breaching cantori and~ii ! a later interval during which, in
many cases, orbits escape seemingly at random in a fas
that samples a Poisson process. ThatT(0.01) scales logarith-
mically in amplitude reflects the fact that escapes typica
begin oncedr rms, the rms separation between perturbed a
unperturbed orbits, approaches a critical value comparab
the size of the region in which the ‘‘sticky’’ orbits are orig
nally stuck. That the escape rate tends in many cases to
hibit at least a rough logarithmic dependence reflects the
that, even after the noisy orbits have spread out to samp
near-invariant population inside the confining cantori, ra
dom kicks can facilitate phase space transport by helping
orbits to ‘‘find’’ holes in the cantori.

That escapes begin whendr rms, rather thandErms, ap-
proaches a critical value has an important implication
how one ought to envision the escape process. Naively,
not completely obvious whether friction and noise facilita
phase space transport by ‘‘jiggling’’ individual orbits o
since they change the orbital energy, by ‘‘jiggling’’ the e
fective phase space hypersurface in which the orbits mo
The fact thatdr rms sets the scale on which things happ
demonstrates that, in point of fact, the former interpretat
is more natural.

The apparent fact that extrinsic diffusion can be viewed
a random process is seemingly consistent with what has b
observed in the context of simple maps representing kic
oscillators @31#. Experiments tracking the evolution of a
ensemble of particles originally trapped within a stochas
web and recording the number in the web as a function
time reveal an initial epoch during which all the particles a
in the web, the duration of which is a decreasing function
the noise amplitude, followed by an epoch during which t
number decreases, which terminates in the approach tow
an asymptotic state corresponding, presumably, to an e
librium between transits into and out of the web.

Allowing for colored noise can significantly reduce th
rate of phase space transport, but only when the autocor
tion time tc becomes comparable to, or larger than, a ch
acteristic crossing time. If the noise is such that the spec
densityS(v) has only minimal power at frequencies comp
rable to the natural frequencies of the unperturbed orbit,
efficacy in inducing accelerated phase space transport wi
reduced significantly. Fora sufficiently large andtc suffi-
ciently small, the two colored noises that were explored yi
essentially the same results as did white noise; and simila
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for a sufficiently small andtc sufficiently long, the effects of
the noise must become essentially negligible, so that
recovers the behavior observed for an unperturbed orbit.
intermediate values, however, the escape statisticsdo depend
on the value ofa. Moreover, this dependence is reminisce
of the effects of periodic driving in at least one importa
respect: For the case of periodic driving, quantities l
T(0.01) exhibit a roughly logarithmic dependence on t
driving frequencyv. For the case of colored noise,T(0.01)
exhibits a roughly logarithmic dependence ona.

This would suggest that, like modulational diffusion tri
gered by periodic driving, noise-induced phase space di
sion is intrinsically a resonance phenomenon. If the Fou
transform of the noise has appreciable power in the
quency range where the unperturbed orbit has appreci
power, noise-induced diffusion will be comparatively ef
cient. If, however, the noise has little power at such frequ
cies, it will serve as a much less efficient agent for ph
space transport, although the effects need not be comple
negligible.

To the extent that, as suggested by the numerical exp
ments described here, the details are relatively unimport
the effects of noise as a source of phase space transpo
determined by two physical quantities, namely~i! the ampli-
tude and~ii ! the autocorrelation time. Increasing the amp
tude makes noise more important; increasing the autoco
lation time makes noise less important.

As a concrete example, consider stars orbiting in an el
tical galaxy comparable in size to the Milky Way but locat
in the central part of a cluster like Coma, where the typi
distance between galaxies is only five to ten times larger t
the diameter of a typical galaxy. Here there are two obvio
sources of noise which one might consider, namely~i! ‘‘dis-
creteness effects’’ reflecting the fact that the galaxy is m
of individual stars rather than a dustlike continuum and~ii !
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the near-random influences of the surrounding environm
Discreteness effects result in gravitational Rutherford scat
ing, which can be modeled reasonably@28# by friction and
d-correlated white noise related by a fluctuation-dissipat
theorem where, in natural units,h;1027– 1029. To the ex-
tent that the near-random influences of the surrounding
vironment can be attributed primarily to a small number
neighboring galaxies, it is also easy to estimate their am
tude and typical autocorrelation time. Given that the near
neighboring galaxy is typically separated by a distance;5
210 times the diameter of the galaxy in question, and t
the relative velocities of different galaxies in a cluster a
usually comparable to the typical velocities of stars within
individual galaxy, one expects that the autocorrelation ti
t* is of order 5–10 characteristic orbital timestcr . Presum-
ing, however, that the perturbing influences of nearby gal
ies reflect tidal effects, their overall strength should scale
D23, whereD is the distance from the galaxy in question,
that a typical amplitudeh;1023– 1022.

In this setting, discreteness effects give rise to compa
tively weak noise with a very short autocorrelation time. E
vironmental effects give rise to a considerably stronger no
with a much longer autocorrelation time. The longer autoc
relation time tends to suppress the effects of environme
noise, but, even so, it would seem likely that, as a source
accelerated phase space transport, environmental noise
be significantly more important than discreteness noise.
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