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First passage time experiments were used to explore the effects of low amplitude noise as a source of
accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then com-
pared with the effects of periodic driving. The objective was to quantify and understand the manner in which
“sticky” chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long
times, can become “unstuck” much more quickly when subjected to even very weak perturbations. For both
noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturba-
tion. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very
similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation
theorem is also largely irrelevant. Allowing for colored noisan significantly decrease the efficacy of the
perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that
there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly,
periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequen-
cies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic
driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the
fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmi-
cally in the amplitude of the perturbatiof51063-651X99)03508-4

PACS numbegps): 05.45—a, 05.40.Ca, 05.60.Cd

[. MOTIVATION where the “noise” Ay corresponds to a random phase shift
uniformly sampling an intervdl— ¢, + ¢].

It is well known that a complex phase space containing That stochastic perturbations can have such effects on
large measures of both regular and chaotic orbits is ofteamiltonian systems is important in understanding the limi-
partitioned by such partial obstructions as canfifior Ar-  tations of simple models of real systems. In the absence of
nold webs[2] which, although not serving as absolute barri- || “perturbations” and any other irregularities, the chaotic
ers, can significantly impede the motion of a chaotic orbitphase space associated with some idealized two- or three-
through a connected phase space region. Indeed, the fact thatmensional Hamiltonian system may be partitioned into re-
in two-dimensional Hamiltonian systems, chaotic orbits cangions which are effectively distinct over relatively short time
be “stuck” near regular islands for very long times was scales. However, even very weak perturbations of the ideal-
discovered empirically3] long before the existence of can- jzed model, so small as to seem irrelevant on dimensional
tori was prover{4]. grounds, can blur these barriers and permit a single orbit to

It has also been long known that low amplitude stochasti¢nove from one region to another on surprisingly short time
perturbations can accelerate Hamiltonian phase space transcgles.
port by enabling orbits to traverse these partial barriers. This Qne practical setting where this may be important is in
was, e.g., explored by Lieberman and Lichtenbiély who  ynderstanding how, in the context of the core-halo mgélgl
investigated how motion described by the simplified Ulamof mismatched charged particle beams, the focusing of an
version of the Fermi acceleration mgf] is impacted by  accelerator beam can be corrupted by imperfections in the
random perturbations, allowing for the modified equationsmagnetic fields. To the extent that such irregularities can be
[7] modeled as noise, there is the concern that noise-induced

diffusion can result in particles in the beam becoming suffi-
ciently defocused as to hit the walls of the container, which
(1.1) is a disaster. Work in this area is currently focused on ob-
taining realistic estimates of the noise amplitude and the

_ 1
un+1_|un+¢n_ 2

3

Wne1= o+ +Ay, modl, form of the power spectrurf®].

Un+1 Another setting is in galactic astronomy. Recent observa-
tions indicating(i) that many/most galaxies are genuinely
triaxial, i.e., neither spherical nor axisymmetric, diigl that

*Electronic address: ilya@phys.ufl.edu they contain a pronounced central mass concentration sug-
"Electronic address: kandrup@astro.ufl.edu gest strongly that the self-consistently determined bulk gravi-
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tational potential associated with a galaxy contains significape time. The experiments that were performed and inter-
cant measures of both regular and chaotic ofdi6§. It was  preted involved both additive and multiplicative noise. They
originally expected that, in such complex potentials, regula@lso allowed for both white noise, which &correlated in
orbits would provide the skeleton to support the triaxialtime and has a flat power spectrum, and colored noise, which
structure, and that chaotic orbits would serve to fill in thehas a finite autocorrelation time, so that the power spectrum
remaining flesh of the self-consistent equilibrifiri]. How-  effectively cuts off for large frequencies. Finally, the experi-
ever, it appears that, in many cases, much of the expectdfents allowed for both external noise, presumed to exist in
role of regular orbits must be played by “sticky” chaotic @nd of itself, and internal noise, which is accompanied by a

orbit segments since, as a result of resonance overlap tigiction that is related to the noise by a fluctuation-dissipation
measure of regular orbits in certain critical regions is Verythe_:orerrils]_. To gain additional insights, th? results .Of these_
small, albeit nonzerpl12]. The obvious question is, can low noisy experments were .a.ISO com_p_ared with experiments in
amplitude perturbations reflecting internal substructures Iiké("hICh the unperturbed |.n|t|al conQ|t|9ns were evolved in the

resence of low amplitude periodic driving, so that the

gas clouds and individual stars or the effects of an extern ) . - . .
environment destabilize a near-equilibrium on a time scal re.achlng of cantori could be triggered by modulational dif-
short compared with the age of the Universe? Preliminar usion [_7]' . .

Section Il describes the experiments that were performed,

work would suggest that they cam3]. ) . .
In both these settings, one knows that weak perturbation@nd the following three sections report the results. Section 111
’ ummarizes the effects of low amplitude periodic driving,

will eventually trigger significant changes in energy on some”- "¢ L .
y 199 g g 9y indicating the relative importance of the amplitude and fre-

fiducial relaxation timetg, which implies that they could . ; .
R P 4 jquency of the perturbation. Section IV describes the effects

have a significant effect. This, however, is not the critica £ diff ¢ sorts of whit . d Sec. Vv y h
issue here. Rather, the question is whether low amplitud8 ITerent sorts of whité noises, and Sec. V- generalizes the
receding section to the case of colored noise. Section VI

perturbations can have significant effects already on a tim8 - ) : L
scale short compared with the time scale on which the valu o_n_cludes_by Summarizing the ?V'd?”ce that, like per|pd|c
driving, noise-induced extrinsic diffusion through cantori is a

ggmﬁl.energy, or any other isolating integral, changes signifi resonance phenomemon which requires substa'ntial power at
In understanding the potential effects of such low amp“_frequenmes c_omparabl_e to the natur_al frequencies of the un-
tude “noise,” there are at least three important questionspet‘rturbe_d orbit, and_ which has an efﬁcac_y that scales logarth-
which need to be addressed. mically in the amplitude of the perturbation.
(i) How does the effect depend on the amplitude of the
noise?ls there a threshold amplitude below which the noise Il. A DESCRIPTION OF THE COMPUTATIONS

is essentially irreIeyant, or do the effectg turn on more gfad“' The experiments described here were performed for orbits
ally? Does the efficacy of the perturbation scale as a simplg, qeq in two representative two-dimensional potentials,
power of the amplitude or does one see something MOrfamely the so-called dihedral potentiad] for one particu-

subtle? . . .
. . ) lar set of parameter values, for which the Hamiltonian takes
(i) To what extent do the details of the noise matteo? the form P

some problems, such as energy barrier penetration, additive

(i.e., state-independentand multiplicative (i.e., state- 1 1 1
dependentnoises can yield very different resufts4]. How- H= E(p>2<+ Df,) —(x*+y?)+ Z(X2+y2)2— szyz,

ever, the physics here is not the same since one is not dealing 2.1)
with a barrier which, in the absence of perturbations, is ab-

solute. Rather, one is dealing with entropy barrier[15]. It and the sixth-order truncation of the Toda lattice potential
would seem that the problem of diffusion through cantori or[20], for which

along an Arnold web is more similar to problems involving

chaotic scattering16] or escapes of unbound orbits from a 1, .1, a1 1,
complex Hamiltonian systerf.7] where, in the absence of ~ H=5(Px+Py)+ 5 (X*+yH) +Xy— Zy"+ X +x%y
perturbations, the requisite escape channels exist and it is
only a matter of how fast any given orbit can find one.

(i) Why does noise lead to accelerated phase space
transport? Granted that the physics is different from diffu-
sion in energy, what is the correct physics? One possibility is 11
that introducing noise simply fuzzes out the details of a +4—5y ) 2.2
purely Hamiltonian evolution that are ensured by Liouville’s
theorem, thus enabling orbits to breach gaps which wouldExtensive explorations of orbits in these Hamiltonians would
otherwise be impenetrable. However, something very differsuggest that, in many respects, these potentials are generic in
ent might be responsible for what is seen. the set of nonintegrable potentials admitting global stochas-

This paper aims to address these questions for twoticity. This is consistent with the fact that the experiments
dimensional Hamiltonian systems by performifigst pas-  performed for this paper yielded similar results for both po-
sage time experiment§Vhat this entails is identifying cha- tentials. However, these potentiadse special in the sense
otic orbits which, in the absence of any perturbations, remaitthat they admit discrete symmetries: the dihedral potential is
“stuck” near regular islands for very long times, and deter-invariant under a rotation by/4; the truncated Toda poten-
mining how the introduction of weak noise reduces the estial is invariant under a rotation by723. It should be noted

1 2 1 1 1
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_ 2400 © through the cantori to become “unconfined.” The precise
3 1800 objective of the work described here is to determine how the
— 1200 time required for chaotic orbits to change from sticky to
< 600k x unconfined is altered when the orbit is perturbed by low
© ol . amplitude perturbations.

Determining the precise location of the outermost can-
torus is possible, albeit exceedingly tediol®&l]. Fortu-
1800J‘ 4 nately, however, this is not essential in order to estimate with

reasonable accuracy when a “sticky” orbit has become “un-
stuck.” Once the orbit has breached the outermost confining
cantorus, it will typically move quickly to probe large por-

Ix(e)l, ly(w)!

Oo 2L4 6 Is 10 tions of the accessible configuration space regions, which
x x ) were inaccessible before this escape. Moreover, escape is
1600 - accompanied by an abrupt increase in the value of the largest

21(q9) 21(h 3 1200 0 short time Lyapunov exponef22], which reflects the fact

-~ 0 é -~ 0 * = 800 that “sticky” chaotic orbit segments confined near regular
3 400 islands tend to be less unstable than unconfined chaotic seg-
-2 -2 ol ments far from any regular islari@3].
-2 0 2 -2 0 2 0246 810 As a practical matter, thérst escape timdor a sticky
% x @ chaotic orbit was identified byi) using simple polynomial

FIG. 1. (a) A chaotic initial condition withE =10 evolved in the formulas to delineate approximately the configuration space

dihedral potential for a timé=512. (b) The same orbit integrated "€gion FO.WhiCh the o_rbit is origir]ally co_nfined, and th@r)
for t=1024. (c) The power spectrix(w)| and|y(w)| for the orbit ~ determining the first time that, with or without perturbations,

in (a). (d) A chaotic initial condition withE=20 evolved in the the orbit leaves this special region. To check that the escape
dihedral potential for a timé=512. () The same orbit integrated Cfiterion was reasonable, two tests were performed: It was
for t=1024. (f) |x(w)| and|y(w)| for the orbit in(d). (g) A chaotic ~ Verified that, with or without perturbations, small changes in
initial condition with E= 20 evolved in the truncated Toda potential the precise definition have only minimal effects on the com-
for a time t=300. (h) The same orbit integrated fdr=600. (i) puted first escape time, and that, for the case of unperturbed
|x(w)| and|y(w)| for the orbit in(g). orbits, the time of escape corresponds to a time when the
largest short time Lyapunov exponent exhibits an abrupt in-

for future reference that, for relatively low energi€&s<40  crease.
or so, a characteristic orbital time scale in each potential This prescription allowed one to identify with reasonable
corresponds to a time~1-3, so that most of the power in accuracy transitions from sticky chaotic to unconfined cha-
typical orbits is in frequenciee~1-5. otic behavior, bunhot from chaotic to regular. The constant

In both potentials it is easy to find “sticky[3] chaotic  energy surface contains KAM tori, which serve as absolute
orbits which, visually, are very nearly indistinguishable from boundaries between regular and chaotic behavior, so that an
regular orbits for comparatively long timdslthough they unperturbed orbit that starts as chaotic can never become
have short time Lyapunov exponents sufficiently large thategular. If, however, the orbit is perturbed, the energy is no
they must be chaotjic Three examples are exhibited in the longer conserved, and it becomes possible in some cases for
left hand panels of Fig. 1, namely two orbits in the dihedralan orbit which began as chaotic to evolve to a state in which,
potential, with energieE=10 andE=20, and an orbit in if the noise were terminated, would be regular.
the truncated Toda potential with=20. The orbit in Fig. The experiments described in this paper involved gener-
1(a) resembles closely what a galactic astronomer wouldating ensembles of perturbed orbits and then extracting sta-
term a regular loop orbit; the orbit in Fig(d) resembles a tistical properties from these ensembles. In this setting, two
regular fish. The orbit in Fig. (@) is less familiar, but would different diagnostics proved especially useful.
again seem nearly regular. The important point, then, is that (i) The time T0.01) required for 1% of the orbits in the
if the orbit is integrated for a somewhat longer interval, itsensemble to escapAs described in the following sections,
behavior exhibits an abrupt qualitative change. This is illus-escapes do not begin immediately. Rather, there is typically a
trated in the center panels of Fig. 1, which exhibit the sameelatively extended initial period, the duration of which de-
initial conditions, each integrated for an interval twice aspends on the form of the perturbation, during which no es-
long. The first two orbits are no longer centrophobic, and thecapes are observed. Perhaps the most obvious number to
third has so changed as to manifest explicitly the discreteéecord would be the time when the first orbit in the ensemble
2713 rotation symmetry of the truncated Toda potential. Inescapes. However, it was found that, in a non-negligible frac-
each case, the orbit is far more chaotic, as is readily contion of the experiments that were performed — perhaps
firmed by the computation of a Lyapunov exponent. 5-10% — one orbit often escapes long before any of the

The transition from nearly regular, “sticky” behavior to others. For this reason, it seemed more reasonable to track a
something more manifestly chaotic occurs once the orbit hadiagnostic that is less sensitive to comparatively rare excep-
diffused through one or more cantori that surround a regulations.
phase space island.,4]. The orbit starts out chaotic and (i) The initial escape rate\. In many, albeit not all,
remains chaotic throughout, but its basic properties exhibitases it was found that, once the escape process “turns on”
significant qualitative changes after the orbit has escapedt (say time ty, orbits escape in a fashion which, at least
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initially, is consistent with a Poisson process, wifit), the
fraction of the orbits which have not escaped, decreasing
exponentially:

N(t)=Ngexgd —A(t—tg)]. (2.3
The experiments with periodic driving involved solving
i i -3 . . .
an evolution equation of the form 0 200 200 500 500
t
d’r _ -
a2 —VV(r)+Asinot+e)r. (2.9 FIG. 2. N(t), the fraction of the orbits from a 4001 orbit en-

semble not yet having escaped at titpeomputed for the initial
condition exhibited in Fig. (&), allowing for a perturbation of am-

The driving was thus characterized by three parameter%litudeA:1072.5with variable frequencies 2:00=<3.0.

namely the frequency, the amplitudeA, and the phase.
Usually, but not always, the phagewas set equal to zero.
Ensembles of periodically driven orbits were generated by
specifying a frequency intervaly, o + A7, (ii) sampling this
interval uniformly to select a collection dfusually 1000
driving frequencies, and theiii ) integrating the same initial

generated by freezing the form and amplitude of the noise
and performing multiple realizations of the same random
process using different pseudorandom seeds.

condition with the same amplitudk for each of these fre- IIl. PERIODIC DRIVING AND MODULATIONAL
quencies. When looking at relatively low frequencies, 0 DIFFUSION
<w<100, the frequency range was taken tobe 1.0. For Experiments involving multiple integrations of the same
higher frequencies, 160w <1000, the rangei=10.0. _initial condition reveal that escape {at least a two-stage
The experiments involving intrinsic noise entailed solving prgcess: In general, there is an initial interval, often quite
Langevin equations of the form extended, during which no escapes occur. Only after this
) interval is there an abrupt onset of escapes which, at least for
ﬂ — —VV(r)— pv+F (2.5) relatively early times, can be well modeled as a Poisson pro-
dt? ' ' cess, wherd\(t), the fraction of the orbits that have not yet

escaped, decreases exponentially. An example of this behav-
with »=7(v) and F homogeneous Gaussian noise characior is illustrated in Fig. 2, which was generated for the initial

terized by its first two moments: condition exhibited in Fig. (), allowing for a frequency
interval 2.6sw<3.0 and an amplitudeA=102% The
(Fa(1))=0 straight line exhibits a linear fit to the interval(0.01)<t
and =300.

As asserted already, at a time only somewhat larger than
Fo(t)Fp(ty))= 80K (V,t;—t ab=xy). (2.6 T(0.01), N(t) appears to decrease exponentially. However,
(Fa(ta)Fo(t2)) = dapk (Vi ~t2) Y. (28 for t>400 or so it is clear from Fig. 2 tha¥(t) decreases
K(v,7) is the autocorrelation function. For the case ofmore slowly. One plausible interpretation of this later subex-

S-correlated white noise, ponential decay is that some of the initially sticky chaotic
orbits have become trapped even closer to the regular island,
K(v,7)=20 n(v)p(7), (2.7 so that escape becomes much more difficult if not impos-

o _ sible. This interpretation was tested by turning off the peri-
where ® denotes a characteristic temperature, the frictionygic driving at a late timé= 1024 and computing both the

and noise being related by a fluctuation-dissipation theoremy it and an approximation to the largest short time
Experiments involving extrinsic noise proceeded identically, yapunov exponent for the interval 1024<3072. The re-

except that the friction was turned off, so that sulting output indicated that, in the absence of any driving,
) many of these orbits were now regular.
d_r:_vv(r)+|:_ 2.9 For fixed frequency interval and phase, bdtf0.01), a
dt? measure of the time before escapes begin, /&anthe initial

escape rate once escapes have begun, typically scale loga-

White noise simulations were performed using an algo+ithmically in A, the amplitude of the driving. Six examples
rithm developed by Grinest al.[24] (see als§25]). Colored  of this behavior are provided in Fig. 3, these corresponding
noise simulations were performed using a more complex alto the three initial conditions exhibited in Fig. 1 for two
gorithm described in Sec. V. The experiments withdifferent frequency intervals, namely 6@=<1.0 and 2.0
é-correlated white noise allowed both for additive noise,<w=3.0. In each case, the size of the error bar has been set
wheren is a constant, and multiplicative noise, wheyés a  equal to the difference between(0.01) and the time at
nontrivial function ofv. The experiments with colored noise which the first orbit escapes. In most cases, this difference is
involved two different choices for the form &f(7), in each  small, but in some cases it becomes appreciable. The fact
case allowing for a parametarwhich characterized the tem- that the curve is not exactly linear, and that it levels out for
poral width of the autocorrelation function. In every case,certain ranges of amplitude, is not an obvious finite number
ensembles of orbits with the same initial conditions wereeffect. Doubling the number of frequencies that were
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720 720 This leads to a natural interpretation of the escape pro-
~ 480 %@ (a) ~ 480 M% (b) cess: Early on, the p_erturbed orbits remain relatively close to
g % 8 ¢ the unperturbed orblt_,.so that.iy is unlikely that they will pe
= 240 W+ = 240 Wz#@ able to escapdThe initial conditions were so chosen that, in

‘*’%m Sy, the absence of perturbations, escape only occurs at a com-
0 = 0 paratively late time.Eventually, however, the perturbed or-
-6 Iog_,: A -2 -6 |og_,j A =2 bits will have spread out to sample more or less uniformly
some region inside the bounding cantori. Once this has hap-

600 o 600 +® pened, orbits will pegin to escape “at random” in a fashion
~ o0l 4 (c) ~ 200 +® (d) that samples a Poisson process. If the holes were very large,
S . o 3 one might expect that the escape rate at this stage would be
2 200 s 2 200 % nearly independent of amplitude. Given, however, that orbits

e, e still have to “hunt” for tiny escape channels, one might
oL e 0 o expect thatA also depends logarithmically on the amplitude
_6| _4A_2 _6| _4A_2 of the perturbation.
910 910 This interpretation is consistent with the expectation that

240[ % 240 i an initially localized ensemble of chaotic orbits will exhibit
~ 160 m% (e) ~ 160 “%,,_ (f) an exponential in time approach towards a near-invariant dis-
o "“?& o @“‘; tribution that corresponds to a near-uniform population of
E:/ 80 00 'E} 80 [ those accessible phase space regions not obstructed by can-

G006 Q0000 tori [26]. It is also qualitatively similar to what appears to
0 0 happen when considering the escape of energetically un-
-7 =5 -3 -7 =5 =3 bound orbits from a complicated two-dimensional potential
logis A logye A [27].

FIG. 3. (a) T(0.01), the first escape time for 1% of an ensemble ~ Periodic driving tends to yield the smalles(0.01) and
of 1000 integrations of the initial condition of Fig(d, driven with  1argestA for driving frequencies» comparable to the natural
frequencies & w=1, plotted as a function of the logarithm of the frequencies of the unperturbed orbits. For example, a plot of
amplitudeA of the perturbation(b) The same for an ensemble with T(0.01) as a function ab for fixed amplitudeA and phase
3<w=A4. (c) T(0.01), the first escape time for 1% of an ensembletypically exhibits the smallest values dF(0.01) for w
of 1000 integrations of the initial condition of Fig(d), driven with  ~1—3 and an abrupt increase for somewhat larger frequen-
frequencies & w=<1, plotted as a function of the logarithm of the cies. However, low amplitude driving can still have an ap-
amplitudeA of the perturbation(d) The same for an ensemble with preciable effect on the time of escape even when the driving
3<w=4.(e) T(0.01), the first escape time for 1% of an ensemblefrequency is much larger than the natural frequencies of the
of 1000 integrations of the initial condition of Fig(d), driven with unperturbed orbit. For exampl&(0.01) can be significantly
frequencies & w=1, plotted as a function of the logarithm of the shorter than the escape time for an unperturbed orbit even for
amplitudeA of the perturbation(f) The same for an ensemble with driving frequencies as large as~ 1000.
3=w=4. Three examples of hoW(0.01) varies withw for fixed A

) . .and ¢ are exhibited in Fig. 4. The three left panels plot
sample;d, and hence the number of orbits, does not S|gn|fr]—(o_01) as a function ofs for 0<w=40. The three right
cantly impact the overall smoothness of the curve. panels plotT(0.01) as a function of logw for 1<

Before the onset of escapes, the rms deviaiops be- < 1000. In some caség0.01) varies smoothly as a function
tween perturbed and unperturbed orbits typically grows as of , for »>10; in other cases, considerably more irregular-
ity is evident. In either case, however, it is apparent that,
OF s> A eXpl xt), (3.D)  overall, the efficacy of the driving is set by the logarithm of
the driving frequencyT(0.01) tends to increase linearly in
whereA is the driving amplitude ang is comparable to the log;qw. Given the plausible hypothesis that this accelerated
positive short time Lyapunov exponent for the unperturbedescape is a resonance phenomenon involving a coupling be-
orbit. The rms deviationSE,, also varies linearly withA,  tween the driving frequency and the natural frequencies of
but exhibits a much weaker time dependence. That botthe unperturbed orbits, the fact that high frequencies still
these quantities scale linearly Ais hardly surprising, since have an appreciable effect can be interpreted as implying
periodic driving is a coherent process. The different timethat, even though the unperturbed orbit has little power at
dependences reflect the fact that, although nearby chaotiigh frequencies, periodic driving can couple via higher or-
orbits tend to diverge exponentially in configuration spaceder harmonics.
with or without small perturbations, energy is conserved ab- When, for fixedA and ¢, T(0.01) andA are compara-
solutely in the absence of perturbations. ThéD.01) scales tively smooth functions of driving frequency,(0.01) tends
as logoA means that escapes begin wh#n,s, rather than to exhibit only a relatively weak dependence on the phase.
SE,ms, @assumes a roughly constant value, independent of thBifferent values ofe tend to yield comparable escape times.
amplitudeA. The characteristic value when escapes begin idf, alternatively,T(0.01) depends sensitively @# it is more
typically ér s~ 1—2, which implies that the perturbed orbits likely that the escape time also depends sensitivelygon
have dispersed to probe most of the region inside the confir-owever, this trend is not uniform. In some cases, varying
ing cantori. continuously from 0 to zr changed ' (0.01) by no more than
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540 (o) by 1500 tive noise. Allowing for a nontrivial dependence oror v
~ 350 Qé%&%@ ~ 1000 yields mult|pI|cat|ve.n0|se. One aim of Fhe work de_scnbed
2 W 2 here was to determine the extent to whlch the detallgd form
= 1801 . = 500 of the noise matters. This was done by first performing ex-
i periments involving additive noise, and then comparing the
0 oL results with experiments that involved multiplicative noise of
0 10 20 30 40 5 g
o two forms, namelyy«v< and nov ™ <, wherev denotes the
orbital speed. The importance of friction was tested by com-
300 paring experiments that included a friction related to the
~ 200 noise by a fluctuation-dissipation theor¢8] with experi-
= ments with no friction at all.
= 100 If the friction and noise are to mimic internal degrees of
, freedom that are ignored in a mean field description, one
Oomo o” 1 5 3 anticipates on dimensional grounds that the temperaiure
o logo @ will be comparable to a typical orbital energy. For §h|s rea-
son, most of the experiments that were performed, including
2251 gy 300 T those described here, involved freezing the temperature at a
= is0f T~ 040 $ St value ® ~E and exploring the effects of varying the ampli-
2 <P<> i tude of . The relative normalizations of the multiplicative
=755 = 120 O%f% and additive noises were fixed by setting
RSt
Oo 10 20 30 40 Oo 1 2 3 (V)= mo(v/(v))*2, (4.1
w logyy w

where 7, denotes the constanj appropriate for additive

FIG. 4. (a) T(0.01), the first escape time for 1% of an ensemblenoise and(v) denotes the average speed of the unperturbed
of 1000 integrations of the initial condition of Fig(a, driven with  orbit. Comparing additive and multiplicative noise entailed
amplitudeA=10"25, plotted as a function of frequency range comparing experiments with the samg.
<Q<w+1 for 0<w<40. (b) The same information for & w Considering only two forms of multiplicative noise in-
<1000, now plotted as a function of Iggw. The dashed line yglyes probing the tip of an iceberg: other multiplicative
represents the escape time for the unperturbed ddiff(0.01),  nojses could in principle have very different effects. How-
the first escape time for 1% of an ensemble of 1000 integrations Oéver the two cases examined here do allow one to ask
the jgiga' condition of Fig. fc), driven with amplitude A\ poher the overall effect of the friction and noise can
=10""" plotted as a function of frequency rangesQd<w1for = o000 gignificantly if one allows the statistics of the noise to

<w<40. i i < . .
O<w 40. (d) The same 'nformat'on.for{w 1000, now plOttEd. vary along an orbit. The particular forms chosen here were
as a function of logy w. The dashed line represents the escape time

for the unperturbed orbite) T(0.01), the first escape time for 1% motl\_/at.ed t.)y two conS|derat|or_1$.) If the noise is mtended
of an ensemble of 1000 integrations of the initial condition of Fig.t0 mimic d'|scretenef55 .effeCtS in a plasma or ‘?‘ gal@)gl,
1(e), driven with amplitudeA=10"25 plotted as a function of e_Iectrostatlc or gravitational _Ruthe_r_ford scattenmyle fric-
frequency ranges<Q<w+1 for 0<w<40. (f) The same infor- 10N should depend on velocif8]. (ii) AII9W|ng for a rela-
mation for 1< <1000, now plotted as a function of lggw. The  tively strong dependence on speegkv=?, should make
dashed line represents the escape time for the unperturbed orbit. €Ven relatively small differences comparatively easy to see.
Overall, the effects of white noise are very similar to the
10%. In other cases[(0.01) can vary by a factor of 4, or effects of periodic driving. In particular, escape was again
more. Finally, it should be noted that the importance of noisé?bserved to be a two-stage process, involving an initial in-
in acce|erating diffusion through cantori can depend Sensiterval dUring which different realizations of the same initial
tively on the details of the orbit. Consider, e.g., two initial condition diverge inside the confining cantori, followed by
conditions in the same potential with the same energy whic/@n abrupt onset of escapes which, at least initially, is well
probe nearby phase space regions and which, in the absenproximated as a Poisson process. Moreover, as for the case
of perturbations, lead to orbits that escape at comparablef periodic driving,N(t) decreases subexponentially at late
times. There is no guarantee that ensembles of periodicalffmes, possibly because some of the noisy orbits have be-
driven orbits generated from these different initial conditionscome more closely trapped near a regular island.
and evolved with the same amplitudes, phases, and driving Figure 5 exhibits plots of IN(t) generated for one repre-

frequencies will exhibit similar values OT(001) andA, sentative initial Condition, Corresponding to the orbit in Flg
even if the unperturbed orbits have power spectra that ar&(@. Here the experiments involved additive noise and fric-
almost identical. tion related by a fluctuation-dissipation theorem, with a fixed

®=10 and 10°<5,=<10"%. It is evident that, asy, de-
creases and the friction and noise become weaker, the escape
time T(0.01) increases and the escape ratdecreases.

For stationary Gaussian white noise with zero mean, ev- More careful examination reveals further that, for fixed
erything is characterized by the autocorrelation function®, both T(0.01) andA scale logarithmically ingg. This is
K(t1—t5) =0 n(r,v)sp(t;—t5), the form of which is deter- illustrated in Fig. 6, which exhibit§(0.01) and a best-fit
mined in turn byz. Choosingz to be constant yields addi- value of A for the ensembles used to construct Figa®ng

IV. WHITE NOISE
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FIG. 7. N(t), the fraction of the orbits from a 2000 orbit en-
semble not yet having escaped at timeomputed for the initial
condition exhibited in Fig. () with ® =10 and ,=10"5. The
four curves represent additive white noise and consiafgolid),

additive white noise with no frictioidashegl multiplicative noise
2

FIG. 5. N(t), the fraction of the orbits from a 2000 orbit en-
semble not yet having escaped at tilpeomputed for the initial
condition exhibited in Fig. @), allowing for additive white noise
with ® =10 and variable;=10"* (broad dashgsz=10"° (triple-

dot-dashe)l] »=10"° (dot-dasheg »=10"" (narrow dashes 7 X ) N . ) g
=102 (solid), and =10"° (dots. with nov* (dot-dashel and multiplicative noise withypov

(triple-dot-dashed

with some ensembles with intermediate valuesydf This ) ) R
logarithmic dependence can be understood by analogy witf"Pits have changed appreciably from their initial values. In
what was observed for periodic driving if one notes that, inthis case, allowing for a friction term to counterbalance the

the presence of noise, the rms deviation between perturbeQJOise assures that, overall, the energies of the orbits exhibit
and unperturbed orbité typically scales as smaller changes, so that the ensembles that evolved with

noise tend to have somewhat smaller changes in energy.
5rrmsoc(7])1/2exp(xt), (4.2 An example of this insensitivity is provided in Fig. 7,
which was generated from orbits with the initial condition of
a conclusion that can be motivated theoreticB®9] and has  Fig. 1(a), with ® =10 andz,=10"°. The solid, dot-dashed,
been confirmed computationall{3]. and triple-dot-dashed curves exhibit Nift) for ensembles
It is interesting that this two-stage evolution — an epochevolved in the presence of both friction and noise, incorpo-
without escapes followed by an epoch with escapes apparating, respectively, additive noise, multiplicative noise with
ently sampling a Poisson process — can also be observed if,cv?, and multiplicative noise withyy>v 2. The dashed
the absence of noise if one considers a strongly localizedurve corresponds to an ensemble evolved with additive
ensemble of initial conditions trapped near a regular islanahoise in the absence of friction. The obvious point is that, for
and ascertains the time at which each member of the era very long time, these curves are nearly indistinguishable.
semble escapes. For example, an ensemble of orbits sam- This insensitivity is again consistent with the hypothesis
pling a cell of size 0.002 centered about the initial conditionthat noise-induced diffusion through cantori is a resonance
used to generate Fig. 6 yielded@(0.01)=310 and A phenomenon, and that the only thing that matters is that the
=0.000587, which should be compared with the valuesoise have significant power at frequencies comparable to
T(0.01)=131 andA =0.001 53 resulting for a single initial the natural frequencies of the unperturbed orbit. If, however,
condition evolved withy=10"°. one alters the form of the autocorrelation function so as to
Perhaps the most significant conclusion about white noissuppress power at frequencies comparable to these natural
is that, at least for the examples considered here, the detaileequencies, one would expect that the effects of the noise
are largely irrelevant. For fixe® and 7, the values of the should decrease, so the(0.01) increases andl decreases.
escape timeT(0.01) and the decay raté are both essen- The extent to which this is true is discussed in Sec. V.
tially the same for the simulations with additive noise and
those with multiplicative noise withyov=2. The computed V. COLORED NOISE

values of T(0.01) andA are also nearly independent of o ) ]
whether or not one allows for a friction term. The only sig-  1he objective of the experiments described here was to

nificant differences between simulations with and withoutexplore the effects of random perturbations with autocorre-

friction arise at late times when the energies of individuallation times sufficiently long that they cannot be modeled as
S-correlated white noise. Once again it was assumed that the

150 0.009 noise is stationary and Gaussian with zero mean and, for
. @ SO . i ; : o
¢~<§ (a) (b) 4 simplicity, attention was restricted to noise that is additive.
= 100 0.006 @ However, it was no longer assumed tK4tr) is 5correlated
S W.@ & in time.
= 50 b 0.0031 & Attention was focused on two types of colored noise. The
0 ®o 0.000 ¢ first is generated by the Ornstein-Uhlenbeck prodese,
8 -5 -4 8 -8 _4 e.g.,[18]), and is characterized by an autocorrelation func-
10g10 7 10G16 7 tion K(7) that decays exponentially, i.e.,
FIG. 6. (a) T(0.01), the first escape time for 1% of an ensemble K(7)=0Z,exp—a|7]). (5.1

of 2000 white noise integrations of the initial condition of Figa)l . _
with ®=10 and variabley. (b) A, the rate at which orbits in this The second involves an exponential decay modulated by a

ensemble escape, fitted to the interVg0.01)<t<<256. power law:
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2

2 _ 2 5
1+a|7'|+%7-2)_ (5.2) Oco=3moyl/(8a”). (5.7)

K(T)=0'§O|GX[X— al7])

A colored random process defined by the Langevin equation
The corresponding spectral densities are, respectively, (2.5 or Eq. (2.8), with an autocorrelation function of the
form (5.2, is equivalent mathematically to a collection of
Tool @ white noise processes. Solving E§.5 for Y(t) yields the
S(w)=—F—— (5.3)  colored input required to solve E(.5 or Eq.(2.9).
T wl+a - S .

The one remaining question involves normalizations. To
compare different colored noises with each other or with an
appropriately defined white noise limit, one must decide
what should be meant by noise with variable autocorrelation

_ (5.4) time but fixed amplitude. This was done here by considering
3T (w?+a?)? sequences of random processes with different values of
and, for eachr, selectingo%, such that

and

2 5
8o, a

S(w)=

The autocorrelation times atg=1/o andt.=2/«. In both

cases, white noise corresponds to a singular limit with o o
—o and o2,—, but 02,/a— const. As for the case of f wKa(T)dT:f
multiplicative noise, these two examples only probe the tip

of an iceberg. However, an analysis of their effed®es |n other words, fixed amplitude but variable autocorrelation
provide insight into the question of how a finite autocorrela-time was assumed to correspond to different colored noises
tion time can impact phase space transport in a complefor which the time integral of the autocorrelation function

phase space. _ _ _ _ ~assumes the same value. Noting that
Generating white noise numerically is comparatively

straightforward, requiring little more than producing a se- %

quence of pseudorandom impulses. Generating colored noise f Kuwhite( 7)d7=20 7, (5.9
takes more thought. The algorithm exploited here was moti- o

vated by the recognition that, in the context of a stochasti
differential equation, a white noise random prockg¢s) can

Kuwhite( 7). (5.9

Gt follows that, for the stochastic proceés.2),

serve as a source to define a colored noise pro¢éys As 3a70 o2

a concrete example, consider how Gaussian white noise can  K(r7)= exp(—al|7]) | 1+ a7+ = 7|.

be used to implement a random process with an autocorrela- 8 3

tion function given by Eq(5.2). (5.10

Given one stochastic proces§(t), one can define a sec-
ond stochastic proces¥(t), implicitly as a solution to the
stochastic differential equation

The Ornstein-Uhlenbeck process requires a normalization,

K(7)=an® exp(—a|7]). (5.11
3 2
d*v(1) +3ad MO +3ade(t) +aBY (1) =X(1). In the experiments modeling intrinsic noise, the colored
dt® dt? dt noise was augmented by a frictiop and the friction and

(5.5 noise were related by a linear fluctuation-dissipation theorem
in terms of a temperatur®. In the experiments modeling
Since the coefficients in E5.5) are time-independent con-  extrinsic noise, the friction vanished afthad no indepen-
stants and((t) is Stationary, it is clear that, if this equation dent meaning as a temperature. Aside framwhich fixes

be solved as an initial value problem, at sufficiently latethe autocorrelation time, all that matters is the quartiéy,
timesY(t) can also be considered stationary provided onlyhich sets the amplitude of the noise.

as is true, that the dynamical systéfb) is stable.

By expressingX(t) and Y(t) in terms of their Fourier
transforms, it is easy to see that, neglecting the effects of
nontrivial boundary conditionge.g., choosing boundary con-
ditions atty,— — =), the spectral densitie€S,(w) andSy(w)
for the two processes satisfy

In N(t)

Sx(w)

(w2+ a2)3.

Sy(w)= (5.6

Assumlngé 'however, thax(t) corresponds to _Wh'te n0|se,' FIG. 8. N(t), the fraction of the orbits from a 4800 orbit en-
Sx(w)= o Is a constant, so that the stochastic process Witemple not yet having escaped at titaeomputed for the initial
spectral densitysy necessarily corresponds to colored noise.condition exhibited in Fig. (&), allowing for friction and additive
Indeed, by performing an inverse Fourier transform, it be-Ornstein-Uhlenbeck noise wite=0.2, ©®=10, and variabler
comes evident theby(w) corresponds to the stochastic pro- =104 (dashedl 7=10"% (dot-dashelj »=10"° (double-dot-
cess(5.2) with dashedl =107 (broad-dashed and =102 (solid).
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In N(t)
In N(t)

0 200 400 600 800 0 200 400 600 800
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FIG. 9. N(t), the fraction of the orbits from a 4800 orbit en- FIG. 11. N(t), the fraction of the orbits from a 4800 orbit en-
semble not yet having escaped at timpeomputed for the initial semble not yet having escaped at tilpeeomputed for the initial
condition exhibited in Fig. (&), allowing for friction and colored condition exhibited in Fig. (), allowing for friction and colored
noise given by Eq.5.2 with «=0.2, ®=10, and variableyn noise given by Eq(5.2) with ® =10, =105, and either white
=10"* (dashedi =105 (dot-dashelf »=10"° (double-dot- noise(dashe} or variablea= 20 (dot-dashejj «=2.0 (triple-dot-
dashedl »=10"7 (broad-dasheq and =102 (solid). dashed, «=0.2 (broad dashésanda=0.02 (solid).

As for white noise, the evolution of an ensemble of noisyof # can yield very similar slopgl80]. In this sense, it is not
colored orbits is a two-stage process. After an initial epoctaccurate to state unambiguously that the escape rate scales
without escapes, during which different members of the enfogarithmically with amplitude. However, what does remain
semble diverge exponentially, escapes turn on abruptly, witlrue is that, overall, escapes tend to happen more slowly in
the first percent of the orbits escaping within an intervalthe presence of lower amplitude perturbations, and that any
T(0.01) much shorter than the time before the first escapesystematic amplitude dependence is very weak, certainly
Interestingly, though, the second phase is often more conmuch weaker than a simple power law; P with p of order
plex than what is observed for white noise. Instead of evolv-unity. Moreover, even though the observed escape rates ex-
ing in a fashion that is well fit pointwise by an exponential hibit considerable irregularities, the 1% escape tiRie.01)
decrease, the number remainimg(t), often exhibits “pla-  does not. As for the case of white noise and periodic driving,
teaus” and “jumps” with (almos} no, and especially large, T(0.01) scales logarithmically in amplitude. Several ex-
decreases(A detailed examination of the data reveals thatamples are exhibited in Figs. ¢ and 13c), which plot
such irregularities can also arise for white noise and periodi@(0.01) as a function of log » for two different initial con-
driving, but are usually much less conspicuous in that gaseditions. In each case, the diamonds represent an Ornstein-

Figures 8—11 exhibit IN(t) generated for an initial con- Uhlenbeck process and the triangles the stochastic process
dition where such irregularities are comparatively small. Fig-(5.2). In panel(a) «=2.0; in panel(c) a=0.2.
ures 8 and 9 exhibit data generated for different 4800 orbit As for white noise, one also finds that, seemingly inde-
ensembles generated, respectively, for the stochastic prgendent ofa, the presence or absence of friction is largely
cesseg5.1) and(5.2), for the same initial condition as Fig. 5, irrelevant. This is, e.g., evident from Table I, which, for two
evolved with® =10.0, «=0.2, and variabley. Figures 10 values ofa, namelya=« (white nois¢ and «=0.02 (auto-
and 11 exhibit analogous plots for the same initial conditioncorrelation timer=50), exhibitsT(0.01) as a function of
with »=10"° and variablea. Figure 12 exhibits data for a log;o5 both in the presence and the absence of friction.
second initial condition in the same potential with the same Another obvious conclusion is that the efficacy of colored
energy for which the early-time irregularities are especiallynoise is a decreasing function af the quantity that sets the

conspicuous. autocorrelation time¢.. When« is very large, so that; is
These _irre_g_ularities imply that a pure expongntial _fit isextremely short, color has virtually no effect. Howeverpas
often not justified. Moreover, even when such adifusti-  decreases antj increasesT(0.01) increases. In particular,

fied, one finds that, for fixed, significantly different values for o<1, which corresponds to an autocorrelation time that
is long compared to a characteristic orbital time scale,
T(0.01) is typically much longer than what is found in the
white noise limit. This behavior is evident from Figs.(h8
and 13d), which exhibitT(0.01) as a function of log « for
fixed »=10°. As for Figs. 13a) and 13c), the diamonds

In N(t)

In N(t)

FIG. 10. N(t), the fraction of the orbits from a 4800 orbit en-
semble not yet having escaped at tilpeomputed for the initial
condition exhibited in Fig. ), allowing for friction and Ornstein-
Uhlenbeck noise, witt® =10, 5= 107°, and either white noise
(dot-dashefl or variable «=20 (dashed, a=2.0 (triple-dot-
dashed, a=0.2 (broad dashgsand a=0.02(solid). FIG. 12. The same as Fig. 8 for a different initial condition.
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180 & 3004 “sticky” chaotic orbits scales logarithmically in the ampli-
~ 120 <>._}.A (@) ~ 200 Q.,:‘.:»-A,A (b) tude of the perturbation. For both white and colored noise,
2 ‘<>i:~,.:® 2 o the 1% escape tim&(0.01) scales logarithmically in the
= 60 EY = 100 ___ T8ing_ amplitude of the perturbation and, at least for white noise, so

o ® 0 does the initial escape rate. The details of the perturbation
-8 -6 -4 —4-20 2 4 seem largely unimportant: The presence or absence of a fric-

0915 7 logsp tion term appears immaterial, and allowing fat least some
150[= 120 forms of) multiplicative noise also has comparatively mini-
(c) 2 (d) mal effects. For the case of white noise, the only thing that
5 1007 @A 5 80~ seems to matter is the amplitude.

§L sol e mes g, 40 e A This logarithmic dependence on amplitude implies that
ooy RN what regulates the overall efficacy of the noise in inducing

0 0 phase space transport is how fast perturbed noisy orbits di-
_8Iog_1§77 -4 -4 "ig?o az 4 verge from the original unperturbed.orbit. Escapes entail a
two-stage process, namgly an early interval during which
FIG. 13. (a) T(0.01), the first escape time for 1% of an en- noisy orbits diverge from the unperturbed orbit without
semble of 4800 integrations, computed for the initial condition useddreaching cantori andi) a later interval during which, in
to generate Fig. (8), plotted as a function of lgg # for fixed « many cases, orbits escape seemingly at random in a fashion
=2.0 for the stochastic processes defined by (Bdl) (diamond$  that samples a Poisson process. Th@.01) scales logarith-
and Eq.(5.2) (triangles, allowing for both friction and noise(b) mically in amplitude reflects the fact that escapes typically
T(0.01) for the same initial condition, plotted as a function of begin oncesr s, the rms separation between perturbed and
log;o « for fixed =10"°, for the stochastic processésl) (dia-  unperturbed orbits, approaches a critical value comparable to
mondg and (5.2) (triangles, again allowing for both friction and  the size of the region in which the “sticky” orbits are origi-
noise. The dashed line represents the asymptotic value for whitga|ly stuck. That the escape rate tends in many cases to ex-
noise @—). (c) The same aga), albeit for a different initial Lt ot |east a rough logarithmic dependence reflects the fact
condition and witha=0.2. (d) The same agb), albeit for the initial 44t even after the noisy orbits have spread out to sample a
condition in(c) and with #=10"" as(a) and(b) for another initial Lo invariant population inside the confining cantori, ran-
condition. dom kicks can facilitate phase space transport by helping the

and triangles represent, respectively, the stochastic processedits to “find” holes in the cantori.
(5.1) and (5.2). The horizontal dashed line represents the That escapes begin whefr ¢, rather thansE,s, ap-
white noise value towards which the data converge dor proaches a critical value has an important implication for
—o. The obvious inference from this, and other, plots is thathow one ought to envision the escape process. Naively, it is
the dependence df(0.01) on« or t. is again roughly loga- not completely obvious whether friction and noise facilitate
rithmic. This is reminiscent of the fact that, as discussed irphase space transport by “jiggling” individual orbits or,
Sec. lll, the efficacy of periodic driving tends to scale loga-since they change the orbital energy, by “jiggling” the ef-
rithmically in the driving frequency. fective phase space hypersurface in which the orbits move.

Determining the overall efficacy of colored noise as aThe fact thatdr,,s sets the scale on which things happen
source of accelerated phase space transport thus involves @emonstrates that, in point of fact, the former interpretation
interplay between amplitude and autocorrelation time, eacly more natural.
of which, in the “interesting” regions of parameter space,  The apparent fact that extrinsic diffusion can be viewed as
contributes logarithmically toT(0.01) and (modulo the 5 \andom process is seemingly consistent with what has been
aforementioned caveats.. observed in the context of simple maps representing kicked
oscillators[31]. Experiments tracking the evolution of an
ensemble of particles originally trapped within a stochastic

Just as for diffusion triggered by low amplitude periodic web and recording the number in the web as a function of
driving, the overall efficacy of noise-induced diffusion of time reveal an initial epoch during which all the particles are

) o in the web, the duration of which is a decreasing function of

TABLE I. The 1% escape timd(0.01) for orbits in an en- o y5ise amplitude, followed by an epoch during which the
semble evolved in the dihedral potent{@ll) with the initial con- number decreases, which terminates in the approach towards
dition used to generate Fig(d), setting® =10.0 and allowing for an asymptotic Stat;e corresponding, presumably, to an equi-
variable . The colored noise was generated by the stochastic prol-ibrium between transits into and Ol,,lt of the Web.,
cess(5.2). Allowing for colored noise can significantly reduce the
rate of phase space transport, but only when the autocorrela-
tion time t, becomes comparable to, or larger than, a char-
acteristic crossing time. If the noise is such that the spectral

VI. DISCUSSION

10919 77 a=w a=w a=0.02 a=0.02
with friction  no friction  with friction no friction

—4 21.621 21.672 71.930 71.811  densityS(w) has only minimal power at frequencies compa-
-5 41.740 41.660 113.024 112.980 rable to the natural frequencies of the unperturbed orbit, its
-6 71.863 71.816 172.396 172.393 efficacy in inducing accelerated phase space transport will be
-7 82.744 82.724 277.684 277.682 reduced significantly. Fow sufficiently large and. suffi-

! 131.368 131.616 277.704 277.709 ciently small, the two colored noises that were explored yield

essentially the same results as did white noise; and similarly,
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for a sufficiently small and, sufficiently long, the effects of the near-random influences of the surrounding environment.
the noise must become essentially negligible, so that onBiscreteness effects result in gravitational Rutherford scatter-
recovers the behavior observed for an unperturbed orbit. Fong, which can be modeled reasonabBg] by friction and
intermediate values, however, the escape statidtictepend s-correlated white noise related by a fluctuation-dissipation
on the value ofr. Moreover, this dependence is reminiscenttheorem where, in natural unitg~10'~10"°. To the ex-

of the effects of periodic driving in at least one importanttent that the near-random influences of the surrounding en-
respect: For the case of periodic driving, quantities likeVironment can be attributed primarily to a small number of
T(0.01) exhibit a roughly logarithmic dependence on thenN€ighboring galaxies, it is also easy to estimate their ampli-
driving frequencyw. For the case of colored noisg(0.01) tude and typical autocorrelation time. Given that the nearest-
exhibits a roughly logarithmic dependence en neighboring galaxy is typically separated by a distance

This would suggest that, like modulational diffusion trig- ,,_ 10 times the diameter of the galaxy in question, and that

gered by periodic driving, noise-induced phase space qiffythe relative velocities of different galaxies in a cluster are

sion is intrinsically a resonance phenomenon. If the Fourie}jsually comparable to the typical velocities of stars within an

transform of the noise has appreciable power in the frelndividual galaxy, one expects that the autocorrelation time

qguency range where the unperturbed orbit has appreciabf@ is of order 5-10 character!stlc_ orbital timg. Presum-
power, noise-induced diffusion will be comparatively effi- Ing, however, that the perturbing influences of nearby galax-

cient. If, however, the noise has little power at such frequen1e§?,mﬂ('}Ct tidal effects, their overall strength should scale as
, WhereD is the distance from the galaxy in question, so

cies, it will serve as a much less efficient agent for phas%;)

at a typical amplitude;~103-10 2.
space transport, although the effects need not be completep n th)i/spsetting pdiscfgteness effects give rise to compara-

negligible. . . ) o
To the extent that, as suggested by the numerical eXperp_vely weak noise with a very short autocorrelation time. En-

ments described here, the details are relatively unimportanYironment""I effects give rise to a considerably stronger noise

the effects of noise as a source of phase space transport a\'y ht_a mthh I(t)ngder ?utocorrelatl(:g t'mf?' 'I;he Ifonge_r autocotr-l
determined by two physical quantities, namélythe ampli- relation ime tends fo suppress he €efiects of environmenta

tude and(ii) the autocorrelation time. Increasing the ampli- noise, but, even so, it would seem likely that, as a source of

tude makes noise more important; increasing the autocorr _gCSilerzﬁitggni)lhani?)rzpi?r::eoggrqtsﬁ?ar\tﬁ gir;\::lrrgtnenr?gga;;gse will
lation time makes noise less important. 9 y P :

As a concrete example, consider stars orbiting in an ellip-
tical galaxy comparable in size to the Milky Way but located
in the central part of a cluster like Coma, where the typical The authors acknowledge useful discussions with Salman
distance between galaxies is only five to ten times larger thaRlabib and Katja Lindenberg. Partial financial support was
the diameter of a typical galaxy. Here there are two obviougprovided by the Institute for Geophysics and Planetary Phys-
sources of noise which one might consider, nantglydis- ics at Los Alamos National Laboratory. The simulations in-
creteness effects” reflecting the fact that the galaxy is made&olving colored noise were performed using computational
of individual stars rather than a dustlike continuum &g  facilities provided by Los Alamos National Laboratory.
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